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1 Introduction

We have used the first-order model-searching programs MAGES&EM to study various prob-

lems in lattice theory. First, we present a case study in lvttie two programs are used to
examine the differences between the stages along the wayl&tbice theory to Boolean al-

gebra. Second, we answer several questions posed by Normgiii &hd Mladen Pavicic on

ortholattices and orthomodular lattices. The questioosmifMegill and Pavici¢ arose in their
study of quantum logics, which are being investigated imemtion with proposed computing
devices based on quantum mechanics. Previous questiorssoflar nature were answered by
McCune and MACE in [2].

MACE (Models And Counter Examples) [3] and SEM (System fouerating Models)
[6] are programs that search for finite models of first-ordsat aquational logic statements.
If the input statement is the denial of a conjecture, thenraogels found are counterexam-
ples. MACE searches for models by transforming its inpud art equiconsistent propositional
problem, then calling a Davis-Putnam-Loveland-Logemacgdure. SEM uses a more direct
method of filling in tables according to various heuristiosl @valuating the input against the
tables. SEM is usually more effective than MACE for problemith large formulas. Both pro-
grams are designed to be complete; that is, if the searchnfimdz! of size: terminates without
finding a model, then there should be none of that size. We\melhe lattices we present in
this note are the smallest ones satisfying the given prigsethecause the programs reported
that smaller examples do not exist.

This note has a companion page on the World Wide Web. The page
http://www.mcs.anl.gov/AR/aar _lattice contains links to MACE, SEM,
and EQP input files and other data files related to this workhiknote, we refer to those files
with bold-faced underlined pseudolinkke this.

2 From Lattice Theory to Boolean Algebra

The standard definition of Boolean algebra is that it is a uaigcomplemented distributive lat-
tice, but other steps along the way are of interest in theystfiquantum logics. As suggested
by Martin Ziegler in [7], a starting point for studying thefgrences between the relatively well
understood classical logic and the less-refined (lessratata) quantum logic, would be ex-
amining the basic underlying structures of each objecte@éwsuch structures are represented
as nodes in the hierarchy shown in Figure 1. Each node repseaevariety of lattices defined
by the axioms listed. Each line between two nodes represenitsclusion of the top class of
lattices as a subset of the class beneath it. The inclusB)ngl), (E), and (G) are clear from
the axioms alone: in each case, the axioms of the lower ctasa aubset of the class above



it and hence immediately form a more general theory. The inginclusions (A), (C), and
(F) were proved with the program EQP [1], with inputs avdiatinline in fileseqp-a[12].in,
egp-c.in, andegp-f.in,
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Figure 1: Structure Heirarchy

The focus of this section is on proving these inclusions tetbiet inclusions by finding ex-

plicit models. An explicit model can add to an intuitive degtion of the theories involved.

For example, each model given below resulted only afterrabearlier completed exhaustive
searches, and so each model given is the smallest modekibtst for the particular problem.

Each node in Figure 1 represents a class of lattices thafystte axioms listed here.

Commutativity (1) cle(z)) ==z
rANYy=yAz Compatibility (6)
rVy=yVa clzVy)=c(z)Acy)

Associativity (2) clx Ny) =c(x)Vely)
(AY)Nz=aA(yAz) Modularity (7)
(xvVy)Vz=aV(yVz) sV(yA@vz)=(eVy A(zVz)

Absorption (3) Orthomodularity (8)

(zVy) ANz ==z zV(c(z)AN(zVy)=aVy

(xAy)Ve =z Weak Invertibility (9)

Distributivity (4) zVe(z)=1

A (yVz)=(xAy)V(zAz) cle(z)) =2
Invertibility (5) Weak Orthomodularity (10)
o V() =1 (c(@) A2V y) V (ely) V ( Ay)) = 1
rAhc(z)=0

Figure 2: Axioms
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Using these equations, MACE and SEM found models that plmtaione of the axiom sets
for the separate types of lattice are equivalent. This wasraplished by supplying the axioms
for a given type of lattice along with the negation of anotlxdiom or set of axioms which are
unique to the second type of lattice. The diagrams in Figune3abeled to correspond to their
use in Figure 1.
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Figure 3: Lattices

For example, in order to obtain the model (A) that satisfiethal axioms of a modular ortho-
lattice but is not necessarily a Boolean algebra, the axidms(2), (3), (5), (6), and (7) are
included as input while axiom (4) is denied. MACE then seadcto find a model that satisfies
all the input clauses including the denial. A matrix of vauexplicitly listing the operation
values for meet, join and complement was returned that lasetsto model (A). The MACE
inputs for models (A), (B), (C), (D), and (F), are availabldioe in filesmace-[abcdf].in.

The procedure used to find models (E) and (G) was differerdiimswe must find a lat-
tice (or modular lattice) without an appropriate completneperation. We did this in two
stages: first finding a lattice (or modular lattice) satisfyinvertibility but not compatibility,
then showing that that particular lattice does not have aptement operation. In the case of
(E), for example, axioms (5) and (6), which distinguish of#ttice theory from lattice theory,
introduce complementation. With axioms (1), (2), (3), aBdwith the denial of (6), MACE's
output gave a model that included a list of values definingtmeplement operation c(x). From
the output we know that the operation explicitly found by MA@oes not satisfy the ortholat-
tice axioms; however, we need to prove that no possible cemmght exists for the lattice that
could satisfy the additional axioms of an ortholattice. Thection values found in the can-
didate lattice were inserted into the input, forcing MACEctmsider the same lattice but now
with the axioms of an ortholattice included (5) and (6) initlegiginal form (not negated). A
second search with this input allowed all possible fundiofx) under axioms (5) and (6) to be
considered. The search was complete with no models founding that the candidate lattice
indeed cannot be an ortholattice. The MACE inputs for mofe)saaind (G) can be found online
in files mace-€[12].in andmace-g[12].in.




3 Answersto Two Questions

In 1999, Megill asked [4] whether the equation
EA YV (2 A (@) V (2 Ay))) =2 A (e(e) V(A y)) (*3-M68)

holds in all weakly orthomodular lattices. SEM found a caumtodel of size 20, which is
depicted in Figure 4.

s s

eg. 2.12] and several of Megill's unpublished questions J4ie SEM input that produced this
lattice is available online in filgem-rw-1.in.

In July 2001, Megill asked us [4] whether the equation
(Vv (c(y)n(e(z) V (c(y) Az V (ely) Ac(x)))))) = (4)
(@ V (e(y) A e(@) V (e(y) AV (e(y) A (e(z) V (e(y) Ax))))))))

holds in every ortholattice. SEM found a countermodel of 4i@, shown in Figure 5. The SEM
input can be found online in filgem-rw-2.in.

Figure 5: RW-2



Acknowledgments

This work was supported by the Mathematical, Informatior €omputational Sciences Divi-
sion subprogram of the Office of Advanced Scientific CompufResearch, U.S. Department
of Energy, under Contract W-31-109-Eng-38 and by the Depant of Educational Programs,
Argonne National Laboratory.

References

[1] W. McCune. 33 basic test problems: A practical evaluatibsome paramodulation strate-
gies. In Robert Veroff, editoAutomated Reasoning and its Applications: Essays in Honor
of Larry Wos chapter 5, pages 71-114. MIT Press, 1997.

[2] W. McCune. Automatic proofs and counterexamples for s@mtholattice identitiednfor-
mation Processing Letter65:285-291, 1998.

[3] W. McCune. MACE 2.0 Reference Manual and Guide. Tech. M&NL/MCS-TM-249,
Mathematics and Computer Science Division, Argonne Natibaboratory, Argonne, IL,
June 2001.

[4] N. Meqill. Correspondence with W. McCune by electroniaim1997-2001.

[5] N. Megill and M. Pavi€ic. Equations and state and tatproperties that hold in infinite
dimensional hilbert spacénternational J. Theoretical Physic89:2337-2379, 2000.

[6] J. Zhang and H. Zhang. SEM: A system for enumerating nsdbi Proceedings of the
International Joint Conference on Atrtificial Intelligenddorgan Kaufmann, 1995.

[7]1 M. Ziegler. Quantum logic: Order structures in quantureamanics. http://lagrange.uni-
paderborn.dé/fziegler/glogic.html, University of Paderborn, Paderh@ermany, 1997.



